Virtually nilpotent groups with finitely many orbits under automorphisms

نویسندگان

چکیده

Let G be a group. The orbits of the natural action \({{\,\mathrm{Aut}\,}}(G)\) on are called automorphism G, and number is denoted by \(\omega (G)\). virtually nilpotent group such that (G)< \infty \). We prove \(G = K \rtimes H\) where H torsion subgroup torsion-free radicable characteristic G. Moreover, we \(G^{'}= D \times {{\,\mathrm{Tor}\,}}(G^{'})\) subgroup. In particular, if maximum normal \(\tau (G)\) trivial, then \(G^{'}\) nilpotent.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups with Finitely Many Conjugacy Classes and Their Automorphisms

We combine classical methods of combinatorial group theory with the theory of small cancellations over relatively hyperbolic groups to construct finitely generated torsion-free groups that have only finitely many classes of conjugate elements. Moreover, we present several results concerning embeddings into such groups. As another application of these techniques, we prove that every countable gr...

متن کامل

On solubility of groups with finitely many centralizers

For any group G, let C(G) denote the set of centralizers of G.We say that a group G has n centralizers (G is a Cn-group) if |C(G)| = n.In this note, we prove that every finite Cn-group with n ≤ 21 is soluble andthis estimate is sharp. Moreover, we prove that every finite Cn-group with|G| < 30n+1519 is non-nilpotent soluble. This result gives a partial answer to aconjecture raised by A. Ashrafi in ...

متن کامل

Isoperimetric Functions of Finitely Generated Nilpotent Groups

We show that the isoperimetric function of a nitely generated nilpotent group of class c is bounded above by a polynomial of degree 2c.

متن کامل

Dominions in finitely generated nilpotent groups

In the first part, we prove that the dominion (in the sense of Isbell) of a subgroup of a finitely generated nilpotent group is trivial in the category of all nilpotent groups. In the second part, we show that the dominion of a subgroup of a finitely generated nilpotent group of class two is trivial in the category of all metabelian nilpotent groups. Section

متن کامل

Subgroups defining automorphisms in locally nilpotent groups

We investigate some situation in which automorphisms of a groupG are uniquely determined by their restrictions to a proper subgroup H . Much of the paper is devoted to studying under which additional hypotheses this property forces G to be nilpotent if H is. As an application we prove that certain countably infinite locally nilpotent groups have uncountably many (outer) automorphisms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2021

ISSN: ['0003-889X', '1420-8938']

DOI: https://doi.org/10.1007/s00013-020-01566-w